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(T T T T 7T T T is better than that at 300°K, since the prediction at 300°K
should be most reliable as it is purely based on the France-
Williams band absorption data.
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NOMENCLATURE

g dimensionless velocity distribution of the laminar
a, distance between the plates through which laminar -~side fluid, w/ii;
flow occurs;
b, wall thickness ; * Presently Engineer, Space Science and Technology,

C, specific heat of fluid, i; Trivandrum, India.
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G, Graetz function;

h;, heat transfer coefficient of fluid i;

H, heat capacity flow rate ratio, C,W,/C, W, ;

ki, thermal conductivity of the laminar—side fluid ;

K, relative thermal resistance of the common wall
and turbulent side convection;

k., wall thermal conductivity;

& axial length measured from the laminar side inlet ;

L, overall length of the exchanger;

Nu,, laminar side Nusselt number, 2a h,/k;

Nuj,  overall Nusselt number, 2a U,/k;

N normalised laminar-side Nusselt number;

Pe, laminar-side Péclét number, 2a fi/a;
temperature of fluid i;

ty,0» laminar side inlet temperature;

;.0 turbulent side inlet temperature ;

u, local axial laminar side fluid velocity ;

i, average laminar side fluid velocity;

U, overall heat transfer coefficient referred to laminar
side;

W, mass rate of flow of fluid i;

X, dimensionless transverse position, y/a;

¥y, transverse position measured from the bottom
plate;

z, dimensionless axial position (2/Pe)(l/a);

Z, dimensionless heat exchanger length (2/Pe)(L/a);

a, thermal diffusivity of laminar side fluid;

&, heat exchanger effectiveness;

& dimensionless temperature of fluid i,
(t; — b3, 0)Ati o — 13,0);

A, additional heat exchanger length;

... (o0), fully developed values.

Subscripts
1, laminar side;
2, turbulent side;

o0, fully developed value.

THE DESIGN of heat exchangers, is customarily based on the
assumption of uniform heat-transfer coefficient along the
length of the exchanger, irrespective of the boundary condi-
tions. This assumption is reasonably valid only for turbulent
flow of fluids {1, 2]. But for fluids in laminar flow the heat-
transfer coefficients become sensitive to the actual boundary
conditions and may not be sufficiently uniform along the
length of the exchanger. Also thermal entrance regions for
laminar flow can be significant [1, 3-5].

Stein and Sastri [6] recently presented a detailed analysis
of heat exchanger with laminar tube-side and turbulent
shell-side flows as a new extension of the classical Graetz
problem and reported various quantities relating to cocur-
rent and countercurrent flows. They assumed uniform heat
transfer coefficient on the shell-side and solved the two-
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dimensional energy equation for the tube-side fluid and
showed that predictions can be made by use of the actual
fully developed heat transfer coefficient and an effective heat
exchanger length and that both of these quantities depend
on the operating conditions of the exchanger.

The present note applies the above analysis to a parallel
plate heat exchanger with laminar flow on one side and
turbulent flow on the other. The fully developed Nusselt
number and the thermal entrance length are given as
functions of operating parameters for both cocurrent and
countercurrent flows.

ANALYSIS

A schematic of the parallel plate exchanger is shown in
Fig. 1. Assuming a constant heat-transfer coefficient on the
turbulent side, the appropriate laminar side energy equation
is written in dimensionless form as

¢y 0%,

W=9(X)E’ &ilx2:0<sx< 1)

0<:z<Z
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Fi1G. 1. Schematic diagram of a parallel plate heat exchanger.

where

g(x) = 6x(1 — x). (2)
Here the equivalent Graetz function G(4, x) is assumed to be
of the form

G4 x) = i ALA)x" 3)
n=1

with the recurrence relation given by
Ag=14,=0,4,=0
and

64

— [An-a

—~ A,-3]forn = 3. (4)
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NUSSELT NUMBERS

It can be shown that for sufficiently large z, the laminar
side Nusselt number can be given by

Nuy(c0) = 2HA/(H + & — KHAy) (5)

where A, is the first order eigen value of the characteristic
equation and the corresponding overall Nusselt number is
given by

Nuj(co) = 2HA /(H + 9). (6)

For the special case of § = — 1 and H = 1, it is known
that

Nu, (00) = 70/13 = 5-385 )

which corresponds to the boundary condition of uniform
wall heat flux. The corresponding Nug (c0) is given by

Nut (o) = 70/(13 + 35K). (8)

It may be noted that the uniform wall temperature
boundary condition is attained as H — o0 and K — 0 (or
KH — 1). For this case 4, is found to be 24303 and the
corresponding

Ny (o0) = Nt (00) = 24, = 4-8606.

ADDITIONAL HEAT EXCHANGER LENGTH
The traditional definition of NTU may be modified by
writing
NTU = { Nuj(x0) [Z + 4] 9)
for this geometry, where A is the appropriate additional heat
exchanger length, which takes into account the effects of

thermal entrance regions. Thus, we obtain the relations for
A as follows: (except for 6 = — 1, H = 1)

1 H+46
4=—7n [-T’LZB,exp{—m—ll)Z}}mo)

and
1 H+ 6
Ayg=———In| - B, . 11
® '11 1‘1[ ( H ) 1] ( )
For the case of uniform wall heat flux (6 = — 1, H = 1),
26 + 710K
a=a, 42+ O8 Bexp(—4,Z) (12)
70
with
4454
4, (13)

" 3x4x11x35x(26+70K)

A is, in general, a function of H, K and the mode of
operation and the length of the exchanger Z. However, in
most cases of practical interest where the effectiveness is
greater than 0-5, Z is sufficiently large such that 4, would
be sufficient for most applications [3].
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RESULTS AND DISCUSSION

The factors that are directly related to the overall heat
transfer rates are the laminar side fully developed Nusselt
number Nu,(c0) and the additional heat exchanger length
Ao

In Fig. 2, Nu,(oo) is normalised with respect to the value
corresponding to the case of uniform wall heat flux and
shown as a function of H and K. The normalized value
corresponding to isothermal wall is about 0-83 and is shown
in Fig. 2. The behaviour is qualitatively identical to that
found with other heat exchanger analyses [3, 4, 6]. In
general, it is observed that operating conditions have
significant effect on laminar side heat transfer coefficients
Nu(co) 1s smaller for cocurrent flow than for counter-current

K=o
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FiG. 2. Variation of normalized Nusselt number with
operating parameters.

flow. In cocurrent flow, the fully developed coefficients are
never larger than the value corresponding to the uniform
wall heat flux boundary condition. On the other hand, in
countercurrent flow, fully developed coefficients are never
smaller than the value corresponding to the uniform wall
temperature boundary condition, but can be significantly
larger than the value corresponding to the boundary
condition of uniform heat flux.

Figure 3 shows the dependence of A, on the operating
parameters. It is seen that the values of 4, for cocurrent
flow are greater than for countercurrent flow, indicating
that thermal entrance region is more significant with cocur-
rent flow than with counter flow.

For values of X less than about 1-0 and for given H, Fig. 2
shows that the order of magnitude of error in Nu,(co) of
the traditional design formulae is the same for both flow
arrangements. However, the error can be greatly magnified
for countercurrent flow because 4, is much smaller as can
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F1G. 3. Variation of additional heat exchanger length with
operating parameters.

Table 1. Quantities related to the cocurrent flow.

be seen in Fig. 3. This is also evident from equation (9) in
which NTU is given as a product of Nu,{cc) and 4. This
influence is even more significant for decreasing values of H.

Tables 1 and 2 give the computed quantities for cocurrent
and countercurrent flows respectively. In each table are
shown the laminar side fully developed Nusselt number, the
additional heat exchanger length 4., Z* and &* Z* is the
value of Z at which 4 = 4, (4 = 095 4,,) as defined in [6]
and ¢* is the corresponding effectiveness. Heat exchanger
computations with 4 = A, require that Z > Z* or ¢ > &*.

These (atter conditions are satisfied as can be seen in the
Tables 1 and 2 so that the use of 4 is justified for most
practical applications.
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Table 2. Quantities related to the countercurrent flow

H Nuj{oo) Nuj{o) 4, z* e* H Nuj (o) Nu{oo) 4, z* e*
K=01 K=201
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K =100 K =100
01 0192 5166 00015 0005 0005 ot 0194 5554 00012 0005 0005
05 0192 5326 00014 0005 0001 05 0192 5404 00013 0005 0001
10 0192 5346 00014 0005 0001 10 0193 5385 00013 0005 0001
20 0192 5356 00014 0005 0001 20 0192 5375 00013 0005 G000
100 0192 5363 00013 0005 0001 10-00 0192 5367 00013 0005 0000
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